Passengers of the Titanic¶
In [1]:
Copied!
import pandas as pd
from ipyvizzu import Data, Config, Style
from ipyvizzustory import Story, Slide, Step
# Create data object, read csv to data frame and add data frame to data object
data = Data()
df = pd.read_csv(
"./titanic/titanic.csv",
dtype={"Pclass": str},
)
df.loc[df["Age"].between(0, 20, "both"), "Age_group"] = "20-"
df.loc[df["Age"].between(20, 30, "right"), "Age_group"] = "20-30"
df.loc[df["Age"].between(30, 40, "right"), "Age_group"] = "30-40"
df.loc[df["Age"].between(40, 50, "right"), "Age_group"] = "40-50"
df.loc[df["Age"].between(50, 60, "right"), "Age_group"] = "50-60"
df.loc[df["Age"].between(60, 100, "right"), "Age_group"] = "60+"
df["Age_group"] = df["Age_group"].fillna("NaN")
# Prepare to sort the dataframe by salary list
agegroupsorter = [
"20-",
"20-30",
"30-40",
"40-50",
"50-60",
"60+",
"NaN",
]
# Create the dictionary that defines the order for sorting
sorterIndex = dict(zip(agegroupsorter, range(len(agegroupsorter))))
# Generate a rank column that will be used to sort
# the dataframe numerically
df["Age_group_rank"] = df["Age_group"].map(sorterIndex)
df.sort_values(["Age_group_rank"], inplace=True)
data.add_data_frame(df)
# Set the style of the charts in the story
style = Style(
{
"plot": {
"yAxis": {
"label": {
"fontSize": "1em",
"paddingRight": "1.2em",
},
"title": {"color": "#ffffff00"},
},
"xAxis": {
"label": {
"angle": "2.5",
"fontSize": "1.1em",
"paddingRight": "0em",
"paddingTop": "1em",
},
"title": {"fontSize": "1em", "paddingTop": "2.5em"},
},
},
"logo": {"width": "5em"},
}
)
# Create story object, add data and style settings to it
story = Story(data=data, style=style)
# Set the size of the HTML element
# that appears within the notebook
story.set_size("100%", "400px")
# Switch on the tooltip that appears
# when the user hovers the mouse over a chart element
story.set_feature("tooltip", True)
# Each slide here is a page in the final interactive story
# Add the first slide
slide1 = Slide(
Step(
Config.bar(
{"x": "Count", "title": "Passengers of the Titanic"}
),
)
)
# Add the slide to the story
story.add_slide(slide1)
slide2 = Slide()
slide2.add_step(
Step(
Config.stackedBar({"x": "Count", "stackedBy": "Sex"}),
)
)
slide2.add_step(
Step(
Config.groupedBar(
{
"x": "Count",
"y": "Sex",
"groupedBy": "Sex",
"legend": "color",
"title": "Rougly one-third of the passengers were ladies",
}
),
)
)
story.add_slide(slide2)
slide3 = Slide()
slide3.add_step(
Step(
Config(
{
"x": ["Count", "Survived"],
"y": "Sex",
"color": "Sex",
"lightness": "Survived",
"label": ["Survived", "Count"],
}
),
)
)
slide3.add_step(
Step(
Config(
{
"align": "stretch",
"title": "Much more women survived than men",
}
),
)
)
story.add_slide(slide3)
slide4 = Slide()
slide4.add_step(
Step(
Config(
{
"x": "Count",
"align": "none",
"label": None,
"lightness": None,
"title": "Let's add the age of the passengers to the mix",
}
),
)
)
slide4.add_step(
Step(
Config(
{
"y": ["Count", "Sex"],
"x": "Age_group",
"label": "Count",
}
),
)
)
story.add_slide(slide4)
slide5 = Slide()
slide5.add_step(
Step(
Config(
{
"label": None,
"title": "Let's see how many people survived/died "
+ "in these age groups",
}
),
)
)
slide5.add_step(
Step(
Config(
{
"y": ["Count", "Sex", "Survived"],
"lightness": "Survived",
"legend": "lightness",
}
),
)
)
slide5.add_step(
Step(
Config(
{
"y": ["Count", "Survived", "Sex"],
}
),
)
)
story.add_slide(slide5)
slide6 = Slide(
Step(
Config(
{
"align": "stretch",
"title": "Survival rate varies a bit between age groups",
}
),
)
)
story.add_slide(slide6)
slide7 = Slide(
Step(
Data.filter("record.Sex == 'male'"),
Config(
{
"title": "But again shows a very different picture for men..."
}
),
)
)
story.add_slide(slide7)
slide8 = Slide()
slide8.add_step(Step(Data.filter(None)))
slide8.add_step(
Step(
Data.filter("record.Sex == 'female'"),
Config({"title": "...and women"}),
)
)
story.add_slide(slide8)
# Play the created story!
story.play()
import pandas as pd
from ipyvizzu import Data, Config, Style
from ipyvizzustory import Story, Slide, Step
# Create data object, read csv to data frame and add data frame to data object
data = Data()
df = pd.read_csv(
"./titanic/titanic.csv",
dtype={"Pclass": str},
)
df.loc[df["Age"].between(0, 20, "both"), "Age_group"] = "20-"
df.loc[df["Age"].between(20, 30, "right"), "Age_group"] = "20-30"
df.loc[df["Age"].between(30, 40, "right"), "Age_group"] = "30-40"
df.loc[df["Age"].between(40, 50, "right"), "Age_group"] = "40-50"
df.loc[df["Age"].between(50, 60, "right"), "Age_group"] = "50-60"
df.loc[df["Age"].between(60, 100, "right"), "Age_group"] = "60+"
df["Age_group"] = df["Age_group"].fillna("NaN")
# Prepare to sort the dataframe by salary list
agegroupsorter = [
"20-",
"20-30",
"30-40",
"40-50",
"50-60",
"60+",
"NaN",
]
# Create the dictionary that defines the order for sorting
sorterIndex = dict(zip(agegroupsorter, range(len(agegroupsorter))))
# Generate a rank column that will be used to sort
# the dataframe numerically
df["Age_group_rank"] = df["Age_group"].map(sorterIndex)
df.sort_values(["Age_group_rank"], inplace=True)
data.add_data_frame(df)
# Set the style of the charts in the story
style = Style(
{
"plot": {
"yAxis": {
"label": {
"fontSize": "1em",
"paddingRight": "1.2em",
},
"title": {"color": "#ffffff00"},
},
"xAxis": {
"label": {
"angle": "2.5",
"fontSize": "1.1em",
"paddingRight": "0em",
"paddingTop": "1em",
},
"title": {"fontSize": "1em", "paddingTop": "2.5em"},
},
},
"logo": {"width": "5em"},
}
)
# Create story object, add data and style settings to it
story = Story(data=data, style=style)
# Set the size of the HTML element
# that appears within the notebook
story.set_size("100%", "400px")
# Switch on the tooltip that appears
# when the user hovers the mouse over a chart element
story.set_feature("tooltip", True)
# Each slide here is a page in the final interactive story
# Add the first slide
slide1 = Slide(
Step(
Config.bar(
{"x": "Count", "title": "Passengers of the Titanic"}
),
)
)
# Add the slide to the story
story.add_slide(slide1)
slide2 = Slide()
slide2.add_step(
Step(
Config.stackedBar({"x": "Count", "stackedBy": "Sex"}),
)
)
slide2.add_step(
Step(
Config.groupedBar(
{
"x": "Count",
"y": "Sex",
"groupedBy": "Sex",
"legend": "color",
"title": "Rougly one-third of the passengers were ladies",
}
),
)
)
story.add_slide(slide2)
slide3 = Slide()
slide3.add_step(
Step(
Config(
{
"x": ["Count", "Survived"],
"y": "Sex",
"color": "Sex",
"lightness": "Survived",
"label": ["Survived", "Count"],
}
),
)
)
slide3.add_step(
Step(
Config(
{
"align": "stretch",
"title": "Much more women survived than men",
}
),
)
)
story.add_slide(slide3)
slide4 = Slide()
slide4.add_step(
Step(
Config(
{
"x": "Count",
"align": "none",
"label": None,
"lightness": None,
"title": "Let's add the age of the passengers to the mix",
}
),
)
)
slide4.add_step(
Step(
Config(
{
"y": ["Count", "Sex"],
"x": "Age_group",
"label": "Count",
}
),
)
)
story.add_slide(slide4)
slide5 = Slide()
slide5.add_step(
Step(
Config(
{
"label": None,
"title": "Let's see how many people survived/died "
+ "in these age groups",
}
),
)
)
slide5.add_step(
Step(
Config(
{
"y": ["Count", "Sex", "Survived"],
"lightness": "Survived",
"legend": "lightness",
}
),
)
)
slide5.add_step(
Step(
Config(
{
"y": ["Count", "Survived", "Sex"],
}
),
)
)
story.add_slide(slide5)
slide6 = Slide(
Step(
Config(
{
"align": "stretch",
"title": "Survival rate varies a bit between age groups",
}
),
)
)
story.add_slide(slide6)
slide7 = Slide(
Step(
Data.filter("record.Sex == 'male'"),
Config(
{
"title": "But again shows a very different picture for men..."
}
),
)
)
story.add_slide(slide7)
slide8 = Slide()
slide8.add_step(Step(Data.filter(None)))
slide8.add_step(
Step(
Data.filter("record.Sex == 'female'"),
Config({"title": "...and women"}),
)
)
story.add_slide(slide8)
# Play the created story!
story.play()