Presentation Poll Results¶
In August, 2022, we asked data scientists in 5 LinkedIn groups about how often they have to present the results of their analysis to business stakeholders. This is a data story about the results of that poll.
In [1]:
Copied!
import pandas as pd
from ipyvizzu import Data, Config, Style
from ipyvizzustory import Story, Slide, Step
# Create data object, read csv to data frame and add data frame to data object
data = Data()
df = pd.read_csv(
"./linkedinpoll/linkedinpoll.csv",
dtype={"Year": str},
)
data.add_data_frame(df)
# Create story object, add data to it
story = Story(data=data)
# Set the size of the HTML element
# that appears within the notebook
story.set_size("100%", "450px")
# Each slide here is a page in the final interactive story
# Add the first slide
slide1 = Slide(
Step(
Style(
{
"legend": {
"label": {"fontSize": "1.1em"},
"paddingRight": "-1em",
},
"plot": {
"marker": {"label": {"fontSize": "1.1em"}},
"paddingLeft": "10em",
"xAxis": {
"title": {"color": "#00000000"},
"label": {"fontSize": "1.1em"},
},
"yAxis": {"label": {"fontSize": "1.1em"}},
},
"logo": {"width": "6em"},
"fontSize": "0.8em",
}
),
Config(
{
"x": {"set": ["Vote percentage [%]", "Answer"]},
"y": "Group number",
"color": "Answer",
"label": "Vote percentage [%]",
"title": "How often do you present "
+ "your findings to business stakeholders?",
}
),
)
)
# Add the slide to the story
story.add_slide(slide1)
slide2 = Slide(
Step(
Style({"plot": {"xAxis": {"label": {"color": "#00000000"}}}}),
Config(
{
"split": True,
"title": "2 or more is the most popular answer in every group",
}
),
)
)
story.add_slide(slide2)
slide3 = Slide(
Step(
Style(
{
"plot": {
"marker": {"label": {"fontSize": "0.916667em"}}
}
}
),
Config(
{
"x": {"set": ["Vote count", "Answer"]},
"label": "Vote count",
"title": "61% of the votes came from one group",
}
),
)
)
story.add_slide(slide3)
slide4 = Slide()
slide4.add_step(
Step(
Style({"plot": {"yAxis": {"title": {"color": "#00000000"}}}}),
Config(
{
"x": "Answer",
"y": ["Group number", "Vote count"],
"split": False,
"legend": "color",
}
),
)
)
slide4.add_step(
Step(
Style({"plot": {"marker": {"label": {"fontSize": "1.1em"}}}}),
Config(
{"y": "Vote count", "title": "More than 700 people voted"}
),
)
)
story.add_slide(slide4)
slide5 = Slide()
slide5.add_step(
Step(
Config(
{
"x": ["Answer percentage [%]", "Answer"],
"y": None,
"label": "Answer percentage [%]",
}
)
)
)
slide5.add_step(
Step(
Style({"plot": {"xAxis": {"label": {"color": "#00000000"}}}}),
Config(
{
"coordSystem": "polar",
"title": "More than two-third of respondents present "
+ "at least once per month",
}
),
)
)
story.add_slide(slide5)
# Play the created story!
story.play()
import pandas as pd
from ipyvizzu import Data, Config, Style
from ipyvizzustory import Story, Slide, Step
# Create data object, read csv to data frame and add data frame to data object
data = Data()
df = pd.read_csv(
"./linkedinpoll/linkedinpoll.csv",
dtype={"Year": str},
)
data.add_data_frame(df)
# Create story object, add data to it
story = Story(data=data)
# Set the size of the HTML element
# that appears within the notebook
story.set_size("100%", "450px")
# Each slide here is a page in the final interactive story
# Add the first slide
slide1 = Slide(
Step(
Style(
{
"legend": {
"label": {"fontSize": "1.1em"},
"paddingRight": "-1em",
},
"plot": {
"marker": {"label": {"fontSize": "1.1em"}},
"paddingLeft": "10em",
"xAxis": {
"title": {"color": "#00000000"},
"label": {"fontSize": "1.1em"},
},
"yAxis": {"label": {"fontSize": "1.1em"}},
},
"logo": {"width": "6em"},
"fontSize": "0.8em",
}
),
Config(
{
"x": {"set": ["Vote percentage [%]", "Answer"]},
"y": "Group number",
"color": "Answer",
"label": "Vote percentage [%]",
"title": "How often do you present "
+ "your findings to business stakeholders?",
}
),
)
)
# Add the slide to the story
story.add_slide(slide1)
slide2 = Slide(
Step(
Style({"plot": {"xAxis": {"label": {"color": "#00000000"}}}}),
Config(
{
"split": True,
"title": "2 or more is the most popular answer in every group",
}
),
)
)
story.add_slide(slide2)
slide3 = Slide(
Step(
Style(
{
"plot": {
"marker": {"label": {"fontSize": "0.916667em"}}
}
}
),
Config(
{
"x": {"set": ["Vote count", "Answer"]},
"label": "Vote count",
"title": "61% of the votes came from one group",
}
),
)
)
story.add_slide(slide3)
slide4 = Slide()
slide4.add_step(
Step(
Style({"plot": {"yAxis": {"title": {"color": "#00000000"}}}}),
Config(
{
"x": "Answer",
"y": ["Group number", "Vote count"],
"split": False,
"legend": "color",
}
),
)
)
slide4.add_step(
Step(
Style({"plot": {"marker": {"label": {"fontSize": "1.1em"}}}}),
Config(
{"y": "Vote count", "title": "More than 700 people voted"}
),
)
)
story.add_slide(slide4)
slide5 = Slide()
slide5.add_step(
Step(
Config(
{
"x": ["Answer percentage [%]", "Answer"],
"y": None,
"label": "Answer percentage [%]",
}
)
)
)
slide5.add_step(
Step(
Style({"plot": {"xAxis": {"label": {"color": "#00000000"}}}}),
Config(
{
"coordSystem": "polar",
"title": "More than two-third of respondents present "
+ "at least once per month",
}
),
)
)
story.add_slide(slide5)
# Play the created story!
story.play()
Group 1: AI & ML - Analytics , Data Science . SAP BI/ Analytics Cloud /Tableau /Power BI /Birst
Group 2: Artificial Intelligence, Digital Transformation Data Science, Automation, Machine Learning Analytics
Group 3: Data Scientist, Data Analyst and Data Engineer
Group 4: Python Developers Community (moderated)
Group 5: Data Analytics, Data Science, Business Analytics, Business Intelligence, Data Scientist & Analyst